Name:	Period:	Date:	

MEASUREMENT AND MATTER NOTES HONORS CHEMISTRY

Directions: This packet will serve as your notes for this unit. Follow along with the PowerPoint presentation and fill in the missing information. Important terms / ideas are in all capitals and bolded!

44			
**ALL	AND CHEMISTRY AFFECTS	THINGS ARE MADE OF	
Branches of Chemis			
-ORGANIC:	,		
-INORGANIC:			
-ANALYTICAL:			
-BIOCHEMISTRY:			
-PHYSICAL:			
Types of Chemistry			
-PURE CHEMISTRY			
-APPLIED CHEMIS	TRY:		
Observations			
-QUALITATIVE:			
-QUANTITATIVE:			
Scientific Notation			
-Short cut for writi	ng or num	bers	
-Always contains a r	number greater than and	d less than followed by $X 10^N$ (N =	α
-Move the moved		e number is between 1 and 10 AND the	number

Move: N is
Move: N is
*Example:
-Need to move decimal until number is between and
-Which way is it moving?:
-Count the number of moved () to give X 10^N
-More Examples:
a) 0.00002789 b) 1,230 c) 99,800,000,000 d) 0.0071
-Express in STANDARD NOTATION:
Move decimal as before!
Accuracy vs. Precision
-ACCURACY:
-PRECISION:
*Tools with numbers after the decimal = precise
**WHEN MAKING, IT'S GOOD TO HAVE!!
-Dartboards: (draw the darts for each AND label the type):

	-Example:
	Mass of silver = g
	Mass of silver = g
	precise measurement will have after the decimal, this means
	the!
	-Which is the measurement?
	4.609 Liters 4.6 Liters 5 Liters
•	PERCENT ERROR:
	-Equation:
	-Example: Sally found the mass of a sample to be What is the % error in
	her measurements?
•	Measurements
	-Quantities that have both a and a
	-Fundamental to so it is important to measurements and
	determine if a measurement is
	WITHOUT MEASUREMENTS, THE OBTAINED IN THE LAB WILL BE
•	Making Measurements
	-In making a measurement, write down all of the (exact) digits that the gives and also one digit that you
	-Why would any digits be uncertain?
	1) Instruments are free of
	2) Measuring involves some

• Precise vs. Imprecise

Estimating Digits

50	-Digital Displays:	on the displa	y is the	_ digit
	-Scales: Witht where the reading is taken) is
30	*MUST READ THE	AT READING IN I		
•	SIGNIFICANT FIGURES ("	SIG FIGS"):		
	-Rules:			
	1) All digits	are significant		
	2) Zeros oth	er sia fias		

4) When a number is	 than one,	zeros before	the	S.F. don't c	ount
Ex:					

3) Zeros at the ____ before an implied ____ don't count (if it's there then they do)

- 5) Zeros after a _____ do count (once you have a S.F.) Ex:
- Rounding with Sig Figs

Ex:

Ex:

-If digit to the right is LESS than 5... _____!!

(Ex: 56.43 with 3 Sig Figs would be _____)

-If digit to the right is GREATER than 5... _____!!

(Ex: 67.39 with 3 Sig Figs would be _____)

-If digit to the right **EQUALS** 5... ______!!

(Ex: 94.65 with 3 Sig Figs would be _____, while 94.75 with 3 Sig Figs would be _____)

- Math with Sig Figs
 - -Multiplication and Division: Count SIG FIGS in each separate term and use the ______amount in the answer!

Ex: 3.052 X 2.10 X 0.75 = CORRECT SIG FIGS =

- Addition and Subt amount	raction: Count DECIMAL PLACES in each separate term and use the in the answer!
Ex: 3.45645 CORRECT S	5 mL - 2.43 mL = SIG FIGS =
Sig Fig Practice	
-How many	are in these numbers?
1) 91,600	
2) 0.003005	
-Calculate and	using the appropriate rule:
3) 0.04216 + 0.0	004134 =
4) (5.610) X (34.	.908) X (2.30) =
SI Units	
-English system is n (not used in, instead we will use the International System of Un)
-Decimal based syst	tem (conversions) makes sharing easier
-Seven Base Units o	are used (only look at five for now)
Mass →	
Length →	
Temperature →	
Time →	
Amount →	
Non SI Units	
	that are SI units
-Two units used in _	
	

 Prefixes

 $C = .56 \times (F - 32)$

-Example: What is _____ expressed in Kelvin?

F = (1.8 X C) + 32

-Some Common Conversion	is:	
1 in = 2.54 cm	1 m = 1000 mm	$1 \text{ mL} = 1 \text{ cm}^3$
1 ft = 12 in	= 1 km	1000 mL =
1 yd =	1 g =	1 min = 60 s
1 mi = 5280 ft	1 g = 100 cg	1 hr =
1 m = 10 dm	1 g = 1000 mg	1 day = 24 hr
1 m =	1000 g =	365 days =
 Start with what is Determine what 		
2) Determine what		out the starting unit
2) Determine what3) Multiply what is given	you must end up in	-
2) Determine what3) Multiply what is given4) Continue	you must end up in by a that will	_
 2) Determine what 3) Multiply what is given 4) Continue 5) Do the 	you must end up in by athat will by conversion factors until the d	esired unit is reached
 2) Determine what 3) Multiply what is given 4) Continue 5) Do the 	you must end up in by a that will by conversion factors until the d ultiply across the top, then divide	esired unit is reached
 2) Determine what 3) Multiply what is given 4) Continue 5) Do the In these problems 	you must end up in by a that will by conversion factors until the dultiply across the top, then divide the UNITS ARE YOUR THE WAY!!!	esired unit is reached
 2) Determine what 3) Multiply what is given 4) Continue 5) Do the 	you must end up in by a that will by conversion factors until the dultiply across the top, then divide the UNITS ARE YOUR THE WAY!!!	esired unit is reached
 2) Determine what 3) Multiply what is given 4) Continue 5) Do the In these problems 	you must end up in by a that will by conversion factors until the dultiply across the top, then divide the UNITS ARE YOUR THE WAY!!!	esired unit is reached
2) Determine what 3) Multiply what is given 4) Continue 5) Do the m In these problem: -Example: What is **In order to cancel a uni	you must end up in by a that will by conversion factors until the dultiply across the top, then divide the UNITS ARE YOUR THE WAY!!!	esired unit is reached LET THEM other must be on the

• Conversion Factors

	b) L to mL
	c) 66 mm to
	d) 1.130 days to
•	DENSITY:
	-Which is heavier a pound of or a pound of?
	-People say "" because they are confusing with
	D =
	-Units are or
	-INTENSIVE PROPERTY:
	-If is given, mass or volume could be determined
	M = V =
	-Practice:
	a) A piece of wood has a mass of and a volume of 23 mL. What is the density?
	b) Mercury metal is poured into a graduated cylinder that holds The mercury used to fill the cylinder weighs 0.3060 kg. Calculate the density (in g/cm³) of mercury.
	c) A piece of wood has a density of 0.82 g/mL and a volume of What is the mass of the wood in mg?
	d) Aluminum has a density of g/cm ³ . What is the mass (in kg) of a cube with a side of 6.78 cm?

•	Density of Water	
	-Liquid water at room temperature will have a density of	
	-When water becomes ice it's density actually (0.92 g/cm³) due to the shape the crystals form that trap inside (about of ice is below water and the rest is above)	r
•	How Does Something Float?	
	-Lower density items on higher density items ice is than water	r!
	-Most is less dense than water	
	-Helium is less dense than	
	-A is less dense than water	
•	Density and Temperature	
	-If temperature, density will	
	-If temp, generally density will	
•	Lava Lamp Density	
	*LABEL THE DIAGRAM WITH EACH STEP NUMBER!	
	1) Heat from transferred to the coil and the "lava"	
	2) As the temperature, the lava density BELOW the density of the liquid, making it up	١
	3) At the top away from the, the temperature of the lava begins to	\
	4) As the temperature, the lava density ABOVE the density of the liquid, making it down	
	5) Lava the coil and the process	
	**THE LAVA LAMP BECAUSE OF!!!	/

MATTE	R:			
-MASS:				
-WEIGH	। ाः			
		*MASS	WEIGHT!	
-Three S	States of Matter			
0 :		, definite _, moving		, not easily
	LIQUID: compressed	shape,	but has a defin	ite volume, not easily
0 (container),	shape, density, easily compro te that is liquid or sol	essed, mo	es the shape of the ving particles (VAPOR =
Phase Ch	High (High Charles)			
*5	Substances can chang	ge phase by	or	energy!!!
-MELTI	NG:			
-FREEZI	ING:			
-EVAPO	RATION:			
-CONDE	ENSATION:			
-SUBLI	MATION:			

	-INTENSIVE PROPERTY:
	Ex:
	-EXTENSIVE PROPERTY:
	Ex:
•	Types of Properties
	-PHYSICAL PROPERTY:
	Ex:
	-CHEMICAL PROPERTY:
	Ex:
•	Types of Changes
	-PHYSICAL CHANGE:
	Ex:
	-CHEMICAL CHANGE:
	Ex:
•	MIXTURE:
	-Two Types
	o HOMOGENEOUS:
	Ex:
	· HETEROGENEOUS:
	Ex:
•	SOLUTION:
	-SOLUTE:
	-SOLVENT:

• Describing Matter

Solution	Solute	Solvent
Lemonade		
Soda pop		
Ocean water		

-INSOLU	JBL	Ε
---------	------------	---

	-INSOLUBLE.	
	-SOLUBLE:	
•	What Affects Solubility Rate?	
	1) will	the dissolving rate
	2) will increase dis	solving rate
	3): the greater amount of: twill become	that is added, the soluble
	4): more surface area a solute has, the	its dissolving rate will be
•	Separating Mixtures	
	-Differences in properties can be use	d to separate mixtures
	1) DECANT: one layer leaving behind another	r layer of a mixture ()
	2) FILTRATION: separates a from the	<u> </u>
	3) MAGNET: removes substances that are	(ex: filings)
	4) CHROMATOGRAPHY: separates	
	5) DISTILLATION: uses a difference in	of two substances to separate them
•	PURE SUBSTANCE:	
	-Two Types	
	o ELEMENT:	
	Ex:	
	o COMPOUND:	

Ex:

•	Chemical Symbols
	-Each element has a or letter symbol
	-First letter is always and the second letter (if present) is
	-Ex:
	-Sometimes the symbols come from the name (ex:)
•	CHEMICAL REACTION:
	*Basically, a has taken place
	-REACTANTS:
	-PRODUCTS:
	-Examples:
	Chemical Reaction Indicators
•	Chemical Reaction Indicators
	1) Energy Transfer →
	Ex:
	2) Color Change →
	Ex:
	3) Production of Gas →
	Ex:
	4) PRECIPITATE →
	Ex:
	*ONLY CAN BETHAT A TOOK PLACE, IF THE SUBSTANCE!!
•	Reaction Laws
	-LAW OF CONSERVATION OF ENERGY: Energy can neither be nor nor to another!
	Ex:

	-LAW OF CONSERVATION OF MASS: Mass can neither be	nor
	Total mass in the universe is!	
	Ex:	
	-LAW OF CONSERVATION OF MASS / ENERGY: Total	of mass and energy in
	the universe is a!	
	Ex:	
•	ENERGY:	
	is the SI unit for energy	
	-Another common unit is	
	-1 calorie = Joules	
	-1 kilocalorie = calories	
•	THERMODYNAMICS:	
	-Energy is in a chemical reaction (to)
	-HEAT () is also usually produced	or absorbed
	o SYSTEM :	
	o SURROUNDINGS :	
•	Heat Transfer	
	-EXOTHERMIC:	
	Ex:	
	-ENDOTHERMIC:	
	Ex:	
•	HEAT CAPACITY:	
	Property depends on how much! (Ex:	vs
	-SPECIFIC HEAT CAPACITY (C or Cp):	
	-Water has a Cp (4.184 J/g°C) need heat	t to raise the temperature
	-Metals have a Cp heat needed to raise the	temperature

Specific Heat Problems
-Units are usually or
-Equation:
q = (Joules)
m = (grams)
c =
$\Delta T = $ Temp - Temp (°C)
-Example: When of heat is added to of olive oil at 21°C, the temperature increases to 85°C. What is the specific heat of the olive oil?
-Example: How many calories does of water absorb when it is heated from 25.0°C to 80.0°C?
CALORIMETRY:
-CALORIMETER: used to measure (ex: good insulators)
-ENTHALPY (H): measure of as heat
=
*Heat gained by system will be as heat lost by surroundings (and vice versa)! Ex: Place a hot piece of metal in water
-Example: An unknown metal with a mass of grams is heated to a temperature of $80.0^{\circ}C$ It is then placed in grams of water that is at a temperature of The temperature of the water and metal then rise to a temperature of $23.5^{\circ}C$. What is the specific heat of the metal?