LIQUIDS / SOLIDS / IMFs

Intermolecular Forces (IMFs)

- **NOT** within molecules
- **NOT** true bonds... weaker attractions
- Represented by dashed lines
- Physical properties (melting points, boiling points, vapor pressures, etc.) can be attributed to the amount and strength of IMFs

Example: **HIGHER BP = STRONGER IMFs**

InTRaMolecular Force

- TRUE BONDS that hold atoms together... STRONGER!

InTERMolecular Force

- attractive force that keeps molecules together... WEAKER!

London Dispersion Forces

- **INSTANTANEOUS** dipoles due to random movement of e- (because of collisions with other molecules)
- **Exist in all molecules even NONPOLAR**
- Creates momentary, short-lived nonsymmetrical distribution of charge (dipole) in neighboring molecule

Dipole-Dipole Forces

- Attractions between molecules with dipoles (POLAR)
- Molecules arrange themselves so opposite poles align
- Larger the dipole, stronger the force of attraction
- **LITTLE STRONGER**... only 1% as strong as ionic bonds
Dipole-Dipole Forces

Attractive forces **DISSIPATE** with **INCREASED** distances!

Ex: Gases

Hydrogen Bonding

- Special type of dipole-dipole attraction... Hydrogen bonded to N, O, or F
- Attraction strength is higher because H bonded to highly electronegative elements
- Opposite poles align
- **STRONGEST** of the IMFs
- Important for bonding and properties of water and DNA

Hydrogen Bonding

\[\delta^- \quad H \quad \delta^+ \]

Hydrogen bond

\[\text{Notice that } \text{H}_2\text{O, HF, and } \text{NH}_3 \text{ are HIGHER than they should be!} \]

- Expect that BP would increase with increasing molar mass (more polarizable cloud)... Stronger IMFs mean higher BP
- BUT lighter hydrides have H bonding and stronger IMFs and small size which means closer, stronger dipoles!

Hydrogen Bonding

Liquid State Properties

- **SURFACE TENSION**: resistance of a liquid to increase its surface area / beading of liquid droplets

HIGHER IMFs = GREATER!

Intermolecular Forces

- **EXAMPLE:** Identify the main type of IMF in each.

 - CCl$_4$
 - CH$_3$OH
 - C$_4$H$_{10}$
 - HF
Liquid State Properties
• **CAPILLARY ACTION**: spontaneous rising of a liquid in a narrow tube

 - **COHESIVE FORCES**: between molecules
 - **ADHESIVE FORCES**: between molecules and container
 - Water... Adhesive **GREATER** than cohesive (concave meniscus)... Hg would be convex!

Liquid State Properties
• **VISCOSITY**: resistance to flow / increases with greater size and lower temps too

Liquid State Properties
• **VOLATILITY**: ability to evaporate readily

Solution Formation and IMFs
• In order to dissolve a substance in a solvent:
 1) Must overcome *(requires energy)*
 - Solute-solute IMFs
 - Solvent-solvent IMFs
 2) Form solute-solvent attractive forces upon mixing *(releases energy)*

Solution Formation and IMFs
POLAR / IONIC dissolve in POLAR:
• ΔH required to overcome IMFs in both the polar/ionic solute and the polar water molecules is quite **LARGE**
• ΔH released due to the interactions between the polar/ionic solute and the polar water molecules is very **LARGE**
• Solute can dissolve because it gets as much energy “back” from the interactions as was required to overcome the IMFs
• Same goes for nonpolar/nonpolar solutions
Solution Formation and IMFs

POLAR / IONIC do NOT dissolve in NONPOLAR:

- ΔH released due to interactions between the polar/ionic solute and the nonpolar solvent is quite SMALL
- Solute CANNOT dissolve because the energy required to overcome the IMFs is not provided by the solute-solvent interactions

Intermolecular Forces

- Gases have WEAK IMFs and lots of motion
- Solids have STRONG IMFs and no motion
- Liquids have both STRONG IMFs and motion

IMFs and Properties

- When considering strength of properties, remember:

 - **Dispersion < Dipole-Dipole < H-Bonding**
 - Linear / Flat molecules = MORE IMFs
 - Spherical / Branched molecules = LESS IMFs
 - If molecules have REALLY large e- cloud (or size), dispersion forces could be strongest!

Types of Solids

- **CRYSTALLINE SOLIDS**
 - Highly regular arrangement of their components (IONIC)
 - crystalline

- **AMORPHOUS SOLIDS**
 - Considerable disorder in their structures (GLASS)
 - amorphous
Main Types of Solids

- **MOLECULAR**: orderly 3D structure with discretely bonded molecules at each of its lattice points / Low MP (Ex: water, dry ice, P₄, S₈)

Main Types of Solids

- **IONIC**: orderly pattern of anions and cations; ions occupy lattice points / Very high MP (Ex: NaCl, CaCl₂)
 - Closest Packing → Large particles (anions) get arranged in a way that they are all packed tightly together; Small particles (cations) fit into the holes... Maximizes +/- attraction and minimizes +/+ or -/- repulsions

Main Types of Solids

- **COVALENT NETWORK**: large networks of strong covalent (C or S) bonds (Ex: Quartz, Graphite, Diamond)
 - Diamond → All C are sp³ hybridized making it strong and hard (must break ALL the bonds)
 - Graphite → Forms layers of C atoms arranged in fused sp² hybridized rings (delocalized e- allow it to conduct)

Main Types of Solids

- **ATOMIC**: includes atoms held together by LDF (Ex: Noble gases) and atoms with free-moving e- (Ex: Metals)

Main Types of Solids

- **COVALENT NETWORK**: large networks of strong covalent (C or S) bonds (Ex: Quartz, Graphite, Diamond)
 - Quartz / Silica (SiO₂) → Structure is actually based on a interconnected SiO₄ tetrahedral
 - Glass → Formed by quickly cooling melted silica, giving an amorphous solid / Other compounds added before cooling to give different types

Bonding Models of Metals

- **Electron Sea Model**: regular array of metals in a "sea of electrons" that conduct heat and electricity
- **Bond (Molecular Orbital) Model**: e- travel within molecular orbitals formed by the valence orbitals of the metal cations
Metal Alloys
Mixtures of two or more elements with at least one being a metal

SUBSTITUTIONAL
Host metal atoms are replaced in the lattice by other atoms of similar size
(Ex: Brass, sterling silver, etc.)

INTERSTITIAL
Holes in the closest packed metal structure filled by small atoms
(Ex: Steel)

Phase Changes
Change in state

To change phase, enough energy is needed to allow the molecules to overcome the IMFs!

MORE IMFs = MORE energy needed!

Vaporization (Evaporation)
Molecules of a liquid escaping from the surface to form a gas

- Always **ENDOTHERMIC**... energy absorbed in order to overcome the IMFs in the liquid
- **Enthalpy of Vaporization (ΔH_{vap}):** energy required to vaporize ONE mole of a liquid at 1 atm (heat of vaporization)
- H₂O has a **HIGH** heat of vaporization (40.7 kJ/mol)... lots of energy needed to evaporate!

Vapor Pressure
Pressure of vapor present at equilibrium (rate of condensation equals rate of evaporation)

- **NONVOLATILE**: liquids with low VPs and high IMFs
- **VOLATILE**: liquids with high VPs and low IMFs
- VP **INCREASES** as temperature **INCREASES**... more energy to escape
- VP **DECREASES** as MM **INCREASES**... more e- mean more polarizable, causing more IMFs! H-bonding is an exception... gives more IMFs so lower VP

Boiling Point
Temperature at which the VP of a liquid equals the atmospheric pressure

- **Normal boiling point**: temperature at which VP of the liquid equals 1 atm
Sublimation

Substance goes directly from solid to gas

- Solids have VP, but it's usually very low
- Solids with few IMFs can have high VP and sublime at room temp

Melting Point

Molecules break loose from the lattice points in a solid, changing to a liquid

- **Enthalpy of Fusion** (ΔH_{fus}): energy required to convert one mole of a solid to one mole of a liquid
- **Normal melting point**: temperature at which solid and liquid states have same VP where total pressure is 1 atm

Heating Curve

ΔH_{fus} always less than ΔH_{vap} for substance because vaporizing has to overcome ALL IMFs not just some!

- Temperature remains **CONSTANT** during a phase change (PE changes, adding energy = INCR., removing energy = DECR., while KE remains same)
- Chemical bonds are **NOT** being broken during phase changes

Exceptions

- Changes of state do not always form at the exact MP and BPs

SUPERCOOLING

Rapid cooling allows liquid to remain a liquid at temperature below its FP. Quick temp change does not allow molecules to organize properly (solid will form readily once it happens)

Exceptions

- Changes of state do not always form at the exact MP and BPs

SUPERHEATING

Rapid heating allows liquid to remain a liquid at temperature above its BP. Quick temp change does not allow enough high energy molecules to accumulate in one place (bubbles very large when form... add boiling chips!)

Phase Diagrams

Represent phases of matter as a function of temperature (x) and pressure (y)... closed systems NOT outdoors!

- Lines represent when two phases are in equilibrium
- **TRIPLE POINT**: all three phases exist in equilibrium
- **CRITICAL TEMP (T_c)**: temp above which the vapor cannot be liquified
- **CRITICAL PRESSURE (P_c)**: pressure required to liquefy AT T_c
- **CRITICAL POINT**: point defined by T_c and P_c
Phase Diagrams

SOLIDS
Low temp
High pres

LIQUIDS
In between

GASES
High temp
Low pres

*Phase boundaries (lines) represent **EQUILIBRIUM** set of conditions for temp and pressure!!

Phase Diagrams

WATER
Notice how the solid-liquid line tilts to the left (- slope) since solid is **LESS DENSE** than liquid form

CARBON DIOXIDE
Notice how the solid-liquid line tilts to the right (+ slope) since solid is **MORE DENSE** than liquid form